Site-specific conversion of cysteine thiols into thiocyanate creates an IR probe for electric fields in proteins.
نویسندگان
چکیده
The nitrile stretching mode of the thiocyanate moiety is a nearly ideal probe for measuring the local electric field arising from the organized environment of the interior of a protein. Nitriles were introduced into three proteins: ribonuclease S (RNase S), human aldose reductase (hALR2), and the reaction center (RC) of Rhodobacter capsulatus, through a facile synthetic scheme for the transformation of cysteine residues into thiocyanatoalanine. Vibrational Stark effect spectroscopy and Fourier transform infrared spectroscopy on the modified proteins demonstrated that thiocyanate residues are a highly general tool for probing electrostatic fields in proteins.
منابع مشابه
Vibrational solvatochromism and electrochromism of cyanide, thiocyanate, and azide anions in water.
Small IR probe molecules have been found to be useful to measure local electric fields in condensed phases and proteins and also to study nucleic acid and protein structure and dynamics by monitoring their vibrational couplings and frequency shifts. However, it is still difficult to accurately describe the vibrational solvatochromic frequency shifts of such IR probes, because the local electric...
متن کاملDo ligand binding and solvent exclusion alter the electrostatic character within the oxyanion hole of an enzymatic active site?
The thousands of enzyme structures solved to date have consistently revealed that biological catalysis occurs within sequestered pockets containing complex interdigitations of polar and hydrophobic groups and from which water molecules are displaced upon substrate binding.1 This chemical complexity has sparked considerable controversy regarding the electrostatic nature of active sites and the r...
متن کاملDirect measurement of the protein response to an electrostatic perturbation that mimics the catalytic cycle in ketosteroid isomerase.
Understanding how electric fields and their fluctuations in the active site of enzymes affect efficient catalysis represents a critical objective of biochemical research. We have directly measured the dynamics of the electric field in the active site of a highly proficient enzyme, Δ(5)-3-ketosteroid isomerase (KSI), in response to a sudden electrostatic perturbation that simulates the charge di...
متن کاملQuantitative, directional measurement of electric field heterogeneity in the active site of ketosteroid isomerase.
Understanding the electrostatic forces and features within highly heterogeneous, anisotropic, and chemically complex enzyme active sites and their connection to biological catalysis remains a longstanding challenge, in part due to the paucity of incisive experimental probes of electrostatic properties within proteins. To quantitatively assess the landscape of electrostatic fields at discrete lo...
متن کاملایجاد جهش نقطه ای در اسید آمینۀ 263 ژن استرپتوکیناز و کلونینگ و بیان پروتئین جهش یافتۀ حاوی سیستئین
Streptokinase is one of the best known thrombolytic agents with widespread clinical use. However, its use is not risk-free due to its immunogenicity, hemorrhagic complications and relatively short half-life in circulation. Specific PEGylation of cysteine residue is a useful technique for reducing most of these complications. The aim of this study was designing and producing a cysteine containin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 128 41 شماره
صفحات -
تاریخ انتشار 2006